Explore ARCExplore ARC

Eric Parish, Aero Ph.D student, wins Von Neumann Fellowship from Sandia National Labs

By | Happenings, News, Research

Eric Parish

Eric Parish, who will graduate this spring with a Ph.D in Aerospace Engineering, is the 2018 recipient of the prestigious John von Neumann Postdoctoral Research Fellowship from Sandia National Laboratories (SNL). The highly competitive fellowship offers the opportunity to establish his own program at SNL to conduct innovative research in computational mathematics and scientific computing on advanced computing architectures.

Parish came to U-M from the University of Wyoming, and has developed innovative methodologies of computational math and physics with Prof. Karthik Duraisamy.

Parish said two of his accomplishments in his doctoral work have been developing data-driven solutions to computational physics problems using the NSF-funded ConFlux computing cluster, and bringing together ideas from statistical mechanics to develop efficient numerical solutions of complex partial differential equations.

“It was bridging a gap between communities,” he said of the latter effort.

“Eric came up with a particularly clever way of generalizing concepts from physics to develop a foundation to solve complex equations at a low cost in a mathematically rigorous fashion,” Duraisamy said. “He is one of the rare students who commands an exceptional grasp of applied mathematics, computing and physics, while being well-rounded in his organizational and communication skills. It has been a pleasure and a privilege to work with him.”

Parish said this research could eventually help usher the next generation of flight, for example, “hypersonic” aircraft that can travel at speeds of Mach 8-10. To help get there, his work moves the field toward a better understanding of the underlying physical phenomena via accurate numerical simulations.

At Sandia’s labs in Livermore, Calif., Parish said he plans to continue the work he started at U-M to develop “reduced order models”, which can process past simulation data to greatly reduce the computational cost of future simulations.

Parish said that conducting research at U-M, with the availability of high performance computing resources and a community of computational scientists to bounce ideas off of, helped push his research to a higher level.

“Within Aero, there are five or six very strong computational groups, which really helps me understand the fundamental aspects of what we’re doing, and what the addition of my small little delta means,” he said. “It’s very exciting to do computational research in that environment; it motivates me to come up with better code.”

In 2016, Parish received a $4,000 fellowship from the Michigan Institute for Computational Discovery and Engineering (MICDE). He used some of the funds to attend the International Workshop on Variational Multiscale Methods in Spain last year, where he met a few dozen people from around the world working on similar problems.

“It was fantastic to network and learn from them,” he said.

Parish grew up in Laramie, Wyo., before attending the University of Wyoming, where he played Division 1 golf. He said there was a small but active computational science community at U-W.

“For its size, there was a lot of good computational stuff there,” he said, adding that 10 years ago he would never have predicted the current direction of his career.

Golf played a significant role in his development as well, Parish said: “Being a successful student-athlete takes an extraordinary amount of work. The successes and failures I had … played an integral part in the development of my work ethic, time management skills, mental attitude, and overall growth as a person…I believe that the experience I gained as a student-athlete gave me a unique perspective and skill set that I was able to use to my advantage.”

As far as his future goes after Sandia, Parish said he plans to either continue in the national lab environment or to explore faculty positions so that he can teach and motivate students as his professors at Wyoming and Michigan did for him.

“I’m grateful for everyone’s help,” he said. “The doors that Michigan can open and the quality of people here are very apparent.”

A simulation of magnetohydrodynamic turbulence done on the ConFlux cluster with roughly 1 billion degree of freedom computation generating about 4TB of data.

Winning posters announced for MICDE 2018 Symposium

By | Events, General Interest, Happenings, News

Approximately 50 posters from post-docs and graduate students across campus entered the Poster Competition at the 2018 MICDE Symposium on March 22, 2018. We’re proud to announce the winners:

  • First Place ($500): “Modeling and Enhanced Sampling of Protein-Protein Recognition,” Yanmin Wang, Chemistry
  • Second Place ($300): “Non-Newtonian Computational Model of Thrombosis Initiation,” Sabrina Lynch, Biomedical Engineering
  • Third Place ($200): “Computational Modeling of Particle-Laden Flows,” Gregory Shallcross, Sarah Beetham, and Yuan Yao, Mechanical Engineering
  • Honorable Mention:UM/LISA: Efficient Linear and Nonlinear Guided Wave Simulation,” Hui Zhang, Aerospace Engineering
  • Honorable Mention:Temperature-Dependent Green’s Function Methods for Electronic Structure Calculations,” Alicia Welden, Chemistry
  • Honorable Mention:Non-invasive Diagnostics of Coronary Artery Disease using Machine Learning and Computational Fluid Dynamics,” Kritika Iyer, Biomedical Engineering
  • Honorable Mention:Automated Diagnosis and Prognosis System for Traumatic Brain Injury Patients with Subdural Hematoma,” Negar Farzaneh

The 2018 MICDE Symposium: Summary by Bradley Dice, Ph.D student in Physics and Computational Science

By | Uncategorized

This piece was first published in LinkedIn by Bradley Dice, U-M Ph.D student in Physics and Computational Science.

MICDE Symposium 2018: Computation, A Pillar of Science and a Lens to the Future

High-performance computing (HPC) is becoming an increasingly powerful tool in the hands of scientists, driving new discoveries in physical sciences, life sciences, and social sciences. The development of new (frequently domain-specific) approaches to machine learning and faster, smarter processing of sets of Big Data allows us to explore questions that were previously impossible to study. Yesterday, I presented a poster at the Michigan Institute for Computational Discovery & Engineering (MICDE) annual Symposium and attended a number of talks by researchers working at the intersection of high-performance computing and their domain science. The theme for the symposium was “Computation: A Pillar of Science and a Lens to the Future.”

Collaborative Computational Science with signac

My scientific work, and the work of my colleagues in the Glotzer lab, has been made vastly more efficient through the use of tools for collaborative science, particularly the signac framework. I presented a poster about how the signac framework (composed of open-source Python packages signacsignac-flow, and signac-dashboard) enables scientists to rapidly simulate, model, and analyze data. The name comes from painter Paul Signac, who, along with Georges Seurat, founded the style of pointillism. This neo-impressionist style uses tiny dots of color instead of long brushstrokes, which collectively form a beautiful image when the viewer steps back. This metaphor fits the way that a lot of science works: given only points of data, scientists aim to see the whole picture and tell its story. Since our lab studies materials, our “points” of data fit into a multidimensional parameter space, where quantities like pressure and temperature, or even particles’ shapes, may vary. Using this data, our lab computationally designs novel materials from nanoparticles and studies the physics of complex crystalline structures.

The core signac package, which acts as a database on top of the file system, helps organize and manage scientific data and metadata. Its companion tool signac-flow enables users to quickly define “workflows” that run on supercomputing clusters, determining what operations to perform and submitting the jobs to the cluster for processing. Finally, signac-dashboard (which I develop) provides a web-based data visualization interface that allows users to quickly scan for interesting results and answer scientific questions. These tools include tutorials and documentation, to help users acquaint themselves and get on to doing science as quickly as possible. Importantly, the tools are not specific to materials science. Many scientific fields have similar questions, and the toolkit can easily be applied in fields where exploration or optimization within parameter spaces are common, ranging from fluid mechanics to machine learning.

During the symposium, I learned a lot about how others are using scientific computing in their own work. The symposium speakers came from a wide range of fields, including biology, mathematics, and fluid dynamics. Some of my favorite talks are described below.

The Past: Phylogeny and Uncovering Life’s Origins

High-performance computing is enabling scientists to look in all sorts of directions, including into the past. Stephen Smith, Assistant Professor of Ecology and Evolutionary Biology at the University of Michigan, talked about his lab’s research in detecting evolutionary patterns using genomic data. From the wealth of genetic data that scientists have collected, the Smith lab aims to improve our understanding of the “tree of life”: the overarching phylogenetic tree that can explain the progress of speciation over time. Projects like Open Tree of Life and PHLAWD, an open-source C++ project to process data from the National Center for Biotechnology Information’s GenBank data source, are just two of the ways that open science and big data are informing our understanding of life itself.

The Present: From Algebra to Autonomy

Cleve Moler, the original author of the MATLAB language and chief mathematician, chairman, and cofounder of MathWorks, spoke about his career and how the tools MATLAB has provided for numerical linear algebra (and many other computational tasks) have been important for the development of science and engineering over the last 34 years. MATLAB is taught to STEM students in many undergraduate curricula, and is used widely across industry to simulate and model the behavior of real systems. Features like the Automated System Driving Toolbox are poised to play a role in autonomous vehicles and the difficult computational tasks inherent in their operation.

The Future: Parallel-in-Time Predictions and Meteorology

A significant challenge in weather and climate modeling is that supercomputer architectures are highly parallel, while many simulations of fluids are inherently serial: each timestep must be computed before the next timestep can begin. Beth Wingate, Professor of Mathematics at the University of Exeter and published poet, is developing a powerful approach that may change the way that such models work. Called “parallel-in-time,” it separates the effects of slow dynamics and fast dynamics, enabling parallel architectures to take advantage of longer timesteps and separate the work across many processors.

Conclusions

Computational science is growing rapidly, improving our ability to address the most pressing questions and the mysteries of our world. As new supercomputing resources come online, such as Oak Ridge National Laboratories’ Summit, the promise of exascale computing is coming ever closer to reality. I look forward to what the next year of HPC will bring to our world.

Interdisciplinary Committee on Organizational Studies (ICOS) Big Data Summer Camp, May 14-18

By | Data, Educational, General Interest, Happenings, News
Social and organizational life are increasingly conducted online through electronic media, from emails to Twitter feed to dating sites to GPS phone tracking. The traces these activities leave behind have acquired the (misleading) title of “big data.” Within a few years, a standard part of graduate training in the social sciences will include a hefty dose of “using of big data,” and we will all be utilizing terms like API and Python.
This year ICOS, MIDAS, and ARC are again offering a one-week “big data summer camp” for doctoral students interested in organizational research, with a combination of detailed examples from researchers; hands-on instruction in Python, SQL, and APIs; and group work to apply these ideas to organizational questions.  Enrollment is free, but students must commit to attending all day for each day of camp, and be willing to work in interdisciplinary groups.

The dates of the camp are all day May 14th-18th.

https://ttc.iss.lsa.umich.edu/ttc/sessions/interdisciplinary-committee-on-organizational-studies-icos-big-data-summer-camp-3/ 

ITS offers training in AWS, Azure, and Google Cloud Platform

By | Educational, Events, General Interest, Happenings, News

Information and Technology Services (ITS) is pleased to announce training for Amazon Web Services, Microsoft Azure, and Google Cloud Platform. These day-long sessions will provide an overview as well as hands-on opportunities to explore these cloud based computing platforms. You will be able to get help with your specific use case, leveraging these platforms. Learn and apply knowledge to the work/research you are doing right now!

All scheduled dates will be held at the Campus Safety Services Building, 1239 Kipke Dr., Ann Arbor, MI with the exception of the May 9 Google Cloud Platform class, which will be held at Pierpont Commons, East Room. Registration required; seats are limited. Click on the class of your choice below to register (UMICH login required):

The training will range from beginner to more advanced throughout the day. If you have attended one of our past trainings for AWS, Azure, or GCP, we would like your input as we  work to finalize the agenda. Detailed agendas will be provided once finalized. To get started with these cloud services, or to get more information visit the service home page.

ITS offers AWS at U-M, Azure at U-M, and GCP at U-M to enable the U-M community to more easily consume public cloud computing services by working with these vendors to secure better terms and pricing only available to the University of Michigan. The ITS service also provides integration to campus resources and security, as well as consulting and training.

For Assistance or Questions

If you have questions about your service, please email ccs.support@umich.edu.

ConFlux cluster expands

By | General Interest, Happenings, HPC, News

ARC-TS has installed 15 new compute nodes into the ConFlux cluster. These nodes have the same 20 cores CPU as the original set, but with 256 GB of RAM instead of 128 GB. Neither the original nodes nor the newly added ones contain any GPUs

As a result, jobs should spend less time in queue, and users can be more liberal in their memory requirements.

U-M launches Data Science Master’s Program

By | Educational, General Interest, Happenings, News

The University of Michigan’s new, interdisciplinary Data Science Master’s Program is taking applications for its first group of students. The program is aimed at teaching participants how to extract useful knowledge from massive datasets using computational and statistical techniques.

The program is a collaboration between the College of Engineering (EECS), the College of Literature Science and the Arts (Statistics), the School of Public Health (Biostatistics), the School of Information, and the Michigan Institute for Data Science.

“We are very excited to be offering this unique collaborative program, which brings together expertise from four key disciplines at the University in a curriculum that is at the forefront of data science,” said HV Jagadish, Bernard A. Galler Collegiate Professor of Electrical Engineering and Computer Science, who chairs the program committee for the program.

“MIDAS was a catalyst in bringing  faculty from multiple disciplines together to work towards the development of this new degree program,”  he added.

MIDAS will provide students in this program with interdisciplinary collaborations, intellectual stimulation, exposure to a broad range of practice, networking opportunities, and space on Central Campus to meet for formal and informal gatherings.

For more information, see the program website at https://lsa.umich.edu/stats/masters_students/mastersprograms/data-science-masters-program.html, and the program guide (PDF) at https://lsa.umich.edu/content/dam/stats-assets/StatsPDF/MSDS-Program-Guide.pdf.

Applications are due March 15.

HPC training workshops begin Tuesday, Feb. 13

By | Educational, Events, General Interest, Happenings, HPC, News

series of training workshops in high performance computing will be held Feb. 12 through March 6, 2018, presented by CSCAR in conjunction with Advanced Research Computing – Technology Services (ARC-TS).

Introduction to the Linux command Line
This course will familiarize the student with the basics of accessing and interacting with Linux computers using the GNU/Linux operating system’s Bash shell, also known as the “command line.”
Location: East Hall, Room B254, 530 Church St.
Dates: (Please sign up for only one)
• Tuesday, Feb. 13, 1 – 4 p.m. (full descriptionregistration)
• Friday, Feb. 16, 9 a.m. – noon (full description | registration)

Introduction to the Flux cluster and batch computing
This workshop will provide a brief overview of the components of the Flux cluster, including the resource manager and scheduler, and will offer students hands-on experience.
Location: East Hall, Room B254, 530 Church St.
Dates: (Please sign up for only one)
• Monday, Feb. 19, 1 – 4 p.m. (full description | registration)
• Tuesday, March 6, 1 – 4 p.m. (full description | registration)

Advanced batch computing on the Flux cluster
This course will cover advanced areas of cluster computing on the Flux cluster, including common parallel programming models, dependent and array scheduling, and a brief introduction to scientific computing with Python, among other topics.
Location: East Hall, Room B250, 530 Church St.
Dates: (Please sign up for only one)
• Wednesday, Feb. 21, 1 – 5 p.m. (full description | registration)
• Friday, Feb. 23, 1 – 5 p.m. (full description | registration)

Hadoop and Spark workshop
Learn how to process large amounts (up to terabytes) of data using SQL and/or simple programming models available in Python, R, Scala, and Java.
Location: East Hall, Room B250, 530 Church St.
Dates: (Please sign up for only one)
• Thursday, Feb. 22, 1 – 5 p.m. (full description | registration)

Peers Health and U-M begin research partnership using disability and workers’ comp healthcare data

By | General Interest, Happenings, News, Research

Peers Health and the University of Michigan are starting a two-year research project that will apply advanced learning technologies to a proprietary global database of millions of de-identified disability and workers’ compensation cases. The goals of the project include developing a prescriptive modeling framework to facilitate development of optimal return-to-work plans for injured or ill patients.

Public policy experts have begun to connect patients’ ability to perform their productive endeavors, such as their job, to their state of general health and well-being. The findings from this project, by helping define when someone objectively has returned to health, could inform decision-making in virtually every healthcare episode.

The principal investigators in the project, Dr. Brian Denton and Dr. Jenna Wiens, are both renowned experts in medical machine learning. Dr. Denton, a professor of Industrial and Operations Engineering and Urology, and Dr. Wiens, an assistant professor of Computer Science and Engineering, are both affiliated with the Michigan Institute of Data Science (MIDAS) at U-M.

Peers Health recently announced an expanded partnership with ODG, an MCG company and part of the Hearst Health Network, to aggressively acquire new data to enhance ODG functionality and to fuel this research. Jon Seymour, MD, CEO of Peers, said, “This is a new phase in medical publishing where raw data collection is the editorial function and cutting-edge machine learning is the technology factor. We turned to the University of Michigan due to its impressive data science programs spanning multiple departments, as well as the specific experience of Dr. Denton and Dr. Wiens in medical applications. We’re confident this initiative will attract many new data contributors along the way.”

“The collaboration with Peers Health is exciting because it provides data that can help build a model that will reduce the time — from both a safety and productivity perspective — for people to return to work following sickness or injury,” Denton said. “Streaming data in from existing patients will allow our model to adapt and improve over time.”

Wiens added: “These data contain a particularly interesting training label: days away from work. We hypothesize that this will be a strong signal for the type, timing, and effectiveness of the treatments and therapies.”

The U-M partnership with Peers was established by MIDAS and the university’s Business Engagement Center (BEC).

“This partnership illustrates the power of combining data from the healthcare industry with the data science expertise of U-M faculty,” said Dr. Alfred Hero, professor of Engineering and co-director of MIDAS.

“It is energizing for the BEC to be part of these innovative collaborative relationships that create real impact in the world,” added BEC Director Amy Klinke.