Mini-course: Introduction to Python — Sept. 11-14

By | Data, Educational, Events, General Interest, News | No Comments

Asst. Prof. Emanuel Gull, Physics, is offering a mini-course introducing the Python programming language in a four-lecture series. Beginners without any programming experience as well as programmers who usually use other languages (C, C++, Fortran, Java, …) are encouraged to come; no prior knowledge of programming languages is required!

For the first two lectures we will mostly follow the book Learning Python. This book is available at our library. An earlier edition (with small differences, equivalent for all practical purposes) is available as an e-book. The second week will introduce some useful python libraries: numpyscipymatplotlib.

At the end of the first two weeks you will know enough about Python to use it for your grad class homework and your research.

Special meeting place: we will meet in 340 West Hall on Monday September 11 at 5 PM.

Please bring a laptop computer along to follow the exercises!

Syllabus (Dates & Location for Fall 2017)

  1. Monday September 11 5:00 – 6:30 PM: Welcome & Getting Started (hello.py). Location: 340 West Hall
  2. Tuesday September 12 5:00 – 6:30 PM: Numbers, Strings, Lists, Dictionaries, Tuples, Functions, Modules, Control flow. Location: 335 West Hall
  3. Wednesday September 13 5:00 – 6:30 PM: Useful Python libraries (part I): numpy, scipy, matplotlib. Location: 335 West Hall
  4. Thursday September 14 5:00 – 6:30 PM: Useful Python libraries (part 2): 3d plotting in matplotlib and exercises. Location: 335 West Hall

For more information: https://sites.lsa.umich.edu/gull-lab/teaching/physics-514-fall-2017/introduction-to-python/

 

Info sessions on graduate studies in computational and data sciences — Sept. 21 and 25

By | Educational, Events, General Interest, News, Research | No Comments

Learn about graduate programs that will prepare you for success in computationally intensive fields — pizza and pop provided

  • The Ph.D. in Scientific Computing is open to all Ph.D. students who will make extensive use of large-scale computation, computational methods, or algorithms for advanced computer architectures in their studies. It is a joint degree program, with students earning a Ph.D. from their current departments, “… and Scientific Computing” — for example, “Ph.D. in Aerospace Engineering and Scientific Computing.”
  • The Graduate Certificate in Computational Discovery and Engineering trains graduate students in computationally intensive research so they can excel in interdisciplinary HPC-focused research and product development environments. The certificate is open to all students currently pursuing Master’s or Ph.D. degrees at the University of Michigan.
  • The Graduate Certificate in Data Science is focused on developing core proficiencies in data analytics:
    1) Modeling — Understanding of core data science principles, assumptions and applications;
    2) Technology — Knowledge of basic protocols for data management, processing, computation, information extraction, and visualization;
    3) Practice — Hands-on experience with real data, modeling tools, and technology resources.

Times / Locations:

HPC training workshops begin Thursday, Sept. 21

By | Educational, Events, General Interest, HPC, News | No Comments

series of training workshops in high performance computing will be held Sept. 21 through Oct. 31, 2017, presented by CSCAR in conjunction with Advanced Research Computing – Technology Services (ARC-TS). All sessions are held at East Hall, Room B254, 530 Church St.

Introduction to the Linux command Line
This course will familiarize the student with the basics of accessing and interacting with Linux computers using the GNU/Linux operating system’s Bash shell, also known as the “command line.”
Dates: (Please sign up for only one)
• Thursday, Sept. 21, 9 a.m. – noon (full descriptionregistration)
• Thursday, Sept. 28, 9 a.m. – noon (full description | registration)
Location:
East Hall, Room B250, 530 Church St.

Introduction to the Flux cluster and batch computing
This workshop will provide a brief overview of the components of the Flux cluster, including the resource manager and scheduler, and will offer students hands-on experience.
Dates: (Please sign up for only one)
• Thursday, Sept. 28, 1 – 4 p.m. (full description | registration)
• Monday, Oct. 2, 9 a.m. – noon (full description | registration)
Location:
East Hall, Room B254, 530 Church St.

Advanced batch computing on the Flux cluster
This course will cover advanced areas of cluster computing on the Flux cluster, including common parallel programming models, dependent and array scheduling, among other topics.
Dates: (Please sign up for only one)
• Tuesday, Oct. 10, 1 – 5 p.m. (full description | registration)
• Thursday, Oct. 12, 9 a.m. – noon (full description | registration)
Location:
East Hall, Room B254, 530 Church St.

Hadoop Workshop
Learn how to process large amounts (up to terabytes) of data using SQL and/or simple programming models available in Python, Scala, and Java.
Date:
• Tuesday, Oct. 31, 1 – 5 p.m. (full description | registration)
Location:
East Hall, Room B254, 530 Church St.

Consultation available for Android app development

By | Educational, General Interest | No Comments

Researchers interested in using the Android platform for app development may consult with CSCAR about their work, free of charge.

CSCAR consultants with industry experience as Android developers can provide guidance on capabilities and limitations of Android apps, timelines for App implementation, 3D interaction, game engines, user interface design, and security.

Please contact cscar@umich.edu for more information.

XSEDE Research Allocation Requests due July 15th

By | Educational, General Interest, HPC, News | No Comments

XSEDE Allocations award eligible users access to compute, visualization, and/or storage resources as well as extended support services.

XSEDE has various types of allocations from short term exploratory request to year long projects. In order to access to XSEDE resources you must have an allocation. Submit your allocation requests via the XSEDE Resource Allocation System (XRAS) in the XSEDE User Portal.

ARC-TS consultants can help researchers navigate the XSEDE resources and process. Contact them at hpc-support@umich.edu

MICDE announces 2017-2018 Fellowship recipients

By | Educational, General Interest, Happenings, News | No Comments

MICDE is pleased to announce the recipients of the 2017-2018 MICDE Fellowships for students enrolled in the PhD in Scientific Computing or the Graduate Certificate in Computational Discovery and Engineering. We had 91 applicants from 25 departments representing 6 schools and colleges. Due to the extraordinary number of high quality applications we increased the number of fellowships from 15 to 20 awards. See our Fellowship page for more information.

AWARDEES

Diksha Dhawan, Chemistry
Negar Farzaneh, Computational Medicine & Bioinformatics
Kritika Iyer, Biomedical Engineering
Tibin John, Neuroscience
Bikash Kanungo, Mechanical Engineering
Yu-Han Kao, Epidemiology
Steven Kiyabu, Mechanical Engineering
Christiana Mavroyiakoumou, Mathematics
Ehsan Mirzakhalili, Mechanical Engineering
Colten Peterson, Climate and Space Sciences & Engineering
James Proctor, Chemical Engineering
Evan Rogers, Biomedical Engineering
Longxiu Tian, S. Ross School of Business
Jipu Wang, Nuclear Engineering and Radiological Sciences
Yanming Wang, Chemistry
Zhenlin Wang, Mechanical Engineering
Alicia Welden, Chemistry
Anna White, Industrial & Operations Engineering
Chia-Nan Yeh, Physics
Yiling Zhang, Industrial & Operations Engineering

HONORABLE MENTIONS

Geunyeong Byeon, Industrial & Operations Engineering
Ayoub Gouasmi, Aerospace Engineering
Joseph Kleinhenz, Physics
Jia Li, Physics
Changjiang Liu, Biophysics
Vo Nguyen, Computational Medicine & Bioinformatics
Everardo Olide, Applied Physics
Qiyun Pan, Industrial & Operations Engineering
Pengchuan Wang, Civil & Environmental Engineering
Xinzhu Wei, Ecology & Evolutionary Biology

U-M students invited to apply for MICDE fellowships — May 19 deadline

By | Educational, Funding Opportunities, General Interest, News | No Comments

University of Michigan students are invited to apply for Michigan Institute for Computational Discovery and Engineering (MICDE) Fellowships for the 2017-2018 academic year. These $4,000 fellowships are available to students in both the Ph.D in Scientific Computing and the Graduate Certificate Program in Computational Discovery and Engineering. Applicants should be graduate students enrolled in either program, although students not yet enrolled but planning to do so may simultaneously submit program and fellowship applications.

Fellows will receive a $4,000 research fund that can be used to attend a conference, to buy a computer, or for any other approved activity that enhances the Fellow’s graduate experience. We also ask that Fellows attend at least 8 MICDE seminars between Fall 2017 and Winter 2018, attend one MICDE students’ networking event, and present a poster at the MICDE Symposium on March 22, 2018. For more details and to apply please visit http://micde.umich.edu/academic-programs/micde-fellowships/.

Interested students should download and complete the application form, and submit it with a one-page resume as a SINGLE PDF DOCUMENT to MICDE-apps@umich.edu. The due date for applications is May 19, 2017, 5:00 E.T. We expect to announce the awardees onJune 5, 2017.

We encourage applications from all qualified candidates, including women and minorities.

MIDAS starting research group on mobile sensor analytics

By | Educational, Events, General Interest, Happenings, News | No Comments

The Michigan Institute for Data Science (MIDAS) is convening a research working group on mobile sensor analytics. Mobile sensors are taking on an increasing presence in our lives. Wearable devices allow for physiological and cognitive monitoring, and behavior modeling for health maintenance, exercise, sports, and entertainment. Sensors in vehicles measure vehicle kinematics, record driver behavior, and increase perimeter awareness. Mobile sensors are becoming essential in areas such as environmental monitoring and epidemiological tracking.

There are significant data science opportunities for theory and application in mobile sensor analytics, including real-time data collection, streaming data analysis, active on-line learning, mobile sensor networks, and energy efficient mobile computing.

Our working group welcomes researchers with interest in mobile sensor analytics in any scientific domain, including but not limited to health, transportation, smart cities, ecology and the environment.

Where and When:

Noon to 2 pm, April 13, 2017

School of Public Health I, Room 7625

Lunch provided

Agenda:

  • Brief presentations about challenges and opportunities in mobile sensor analytics (theory and application);

  • A brief presentation of a list of funding opportunities;

  • Discussion of research ideas and collaboration in the context of grant application and industry partnership.

Future Plans: Based on the interest of participants, MIDAS will alert researchers to relevant funding opportunities, hold follow-up meetings for continued discussion and team formation as ideas crystalize for grant applications, and work with the UM Business Engagement Center to bring in industry partnership.

Please RSVP.  For questions, please contact Jing Liu, Ph.D, MIDAS research specialist (ljing@umich.edu; 734-764-2750).

Workshop co-chaired by MIDAS co-director Prof. Hero releases proceedings on inference in big data

By | Al Hero, Educational, General Interest, Research | No Comments

The National Academies Committee on Applied and Theoretical Statistics has released proceedings from its June 2016 workshop titled “Refining the Concept of Scientific Inference When Working with Big Data,” co-chaired by Alfred Hero, MIDAS co-director and the John H Holland Distinguished University Professor of Electrical Engineering and Computer Science.

The report can be downloaded from the National Academies website.

The workshop explored four key issues in scientific inference:

  • Inference about causal discoveries driven by large observational data
  • Inference about discoveries from data on large networks
  • Inference about discoveries based on integration of diverse datasets
  • Inference when regularization is used to simplify fitting of high-dimensional models.

The workshop brought together statisticians, data scientists and domain researchers from different biomedical disciplines in order to identify new methodological developments that hold significant promise, and to highlight potential research areas for the future. It was partially funded by the National Institutes of Health Big Data to Knowledge Program, and the National Science Foundation Division of Mathematical Sciences.