Explore ARCExplore ARC

Eric Michielssen honored for paper describing new algorithm to solve Maxwell’s equations

By | General Interest, Happenings, News

Eric Michielssen, professor of Electrical Engineering and Computer Science, and Associate Vice President for Advanced Research Computing, has won the Sergei A. Schelkunoff Transactions Prize Paper Award for research impacting the ability to rapidly analyze electromagnetic phenomena.

This award is presented to the authors of the best paper published in the IEEE Transactions on Antennas and Propagation during the previous year.

The 2017 paper, “A Butterfly-Based Direct Integral-Equation Solver Using Hierarchical LU Factorization for Analyzing Scattering From Electrically Large Conducting Objects,“ co-authored by Han Guo (ECE doctoral student), Yang Liu (MSE PHD, EE, 2013 2015; Lawrence Berkeley National Lab), and Prof. Jun Hu (UESTC), describes a new algorithm for solving Maxwell’s equations that is orders of magnitude faster than prior algorithms, opening the door to its use for the design and optimization of electromagnetic devices.

For more, see the College of Engineering press release.

MICDE to provide data analysis and dissemination support for $18 million tobacco research center

By | General Interest, Happenings, News, Research

The University of Michigan School of Public Health will house a new, multi-institutional center focusing on modeling and predicting the impact of tobacco regulation, funded with an $18 million federal grant from the National Institutes of Health and the Food and Drug Administration.

The Center for the Assessment of the Public Health Impact of Tobacco Regulations will be part of the NIH and FDA’s Tobacco Centers of Regulatory Science, the centerpiece of an ongoing partnership formed in 2013 to generate critical research that informs the regulation of tobacco products.

The Michigan Institute for Computational Discovery and Engineering (MICDE) will support the center’s Data Analysis and Dissemination core by collecting national and regional survey data, conducting analysis of the use of tobacco products including vaping and e-cigarettes, and disseminate the resulting tobacco modeling parameters to other research centers and the Food and Drug Administration.

The center is led by MICDE affiliated faculty member Rafael Meza, associate professor of Epidemiology, and David Levy, professor of Oncology at Georgetown University.

For more on the center, see the press release from the U-M School of Public Health: https://sph.umich.edu/news/2018posts/tcors-091718.html

MDST group wins KDD best paper award

By | General Interest, Happenings, MDSTPosts, Research

A paper by members and faculty leaders of the Michigan Data Science Team (co-authors: Jacob Abernethy, Alex Chojnacki, Arya Farahi, Eric Schwartz, and Jared Webb) won the Best Student Paper award in the Applied Data Science track at the KDD 2018 conference in August in London.

The paper, ActiveRemediation: The Search for Lead Pipes in Flint, Michigan, details the group’s ongoing work in Flint to detect pipes made of lead and other hazardous material.

For more on the team’s work, see this recent U-M press release.

U-M part of new software institute on high-energy physics

By | General Interest, Happenings, News, Research

The University of Michigan is part of an NSF-supported 17-university coalition dedicated to creating next-generation computing power to support high-energy physics research.

Led by Princeton University, the Institute for Research and Innovation in Software for High Energy Physics (IRIS-HEP) will focus on developing software and expertise to enable a new era of discovery at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland.

Shawn McKee, Research Scientist in the U-M Department of Physics, is a co-PI of the institute. His His work will focus on integrating and extending the Open Storage Grid networking activities with similar efforts at the LHC.

For more information, see Princeton’s press release, and the NSF’s announcement.

Turbo High Performance Research Storage grows 2PB and increases speed

By | General Interest, Happenings, HPC, News

Turbo Research Storage, the high performance research storage option available to researchers anywhere on campus, was recently expanded 2PB of new encrypted capacity. This new capacity allows Turbo to keep up with the growth of research data while also increasing performance with expanded caches and more network connectivity.

The work also increased Turbo’s performance to campus and ARC-TS resources by 50 percent to 60Gbps. A plan was also approved allowing for Turbo to grow to 160Gbps with room to 320 Gbps performance between Turbo and the newly announced HPC system Great Lakes.

New course for fall 2018: On-Ramp to Data Science for Chemical Engineers

By | Educational, General Interest, Happenings, News

Description: Engineers are encountering and generating a ever-growing body of data and recognizing the utility of applying data science (DataSci) approaches to extract knowledge from that data. A common barrier to learning DataSci is the stack of prerequisite courses that cannot fit into the typical engineering student schedule. This class will remove this barrier by, in one semester, covering essential foundational concepts that are not part of many engineering disciplines’ core curricula. These include: good programming practices, data structures, linear algebra, numerical methods, algorithms, probability, and statistics. The class’s focus will be on how these topics relate to data science and to provide context for further self-study.

Eligibility: College of Engineering students, pending instructor approval.

More information: http://myumi.ch/LzqPq

Instructor: Heather Mayes, Assistant Professor, Chemical Engineering, hbmayes@umich.edu.

University of Michigan awarded Women in High Performance Computing chapter

By | General Interest, News

The University of Michigan has been recognized as one of the first Chapters in the new Women in High Performance Computing (WHPC) Pilot Program.

“The WHPC Chapter Pilot will enable us to reach an ever-increasing community of women, provide these women with the networks that we recognize are essential for them excelling in their career, and retaining them in the workforce.” says Dr. Sharon Broude Geva, WHPC’s Director of Chapters and Director of Advanced Research Computing (ARC) at the University of Michigan (U-M). “At the same time, we envisage that the new Chapters will be able to tailor their activities to the needs of their local community, as we know that there is no ‘one size fits all’ solution to diversity.”

“At WHPC we are delighted to be accepting the University of Michigan as a Chapter under the pilot program, and working with them to build a sustainable solution to diversifying the international HPC landscape” said Dr. Toni Collis, Chair and co-founder of WHPC, and Chief Business Development Officer at Appentra Solutions.

The process of selecting organizations to participate in the program accounted for potential conflicts of interest; Geva did not vote on U-M’s application.

About Women in High Performance Computing (WHPC) and the Chapters and Affiliates Pilot Program

Women in High Performance Computing (WHPC) was created with the vision to encourage women to participate in the HPC community by providing fellowship, education, and support to women and the organizations that employ them. Through collaboration and networking, WHPC strives to bring together women in HPC and technical computing while encouraging women to engage in outreach activities and improve the visibility of inspirational role models.

WHPC has launched a pilot program for groups to become Affiliates or Chapters. The program will share the knowledge and expertise of WHPC as well as help to tailor activities and develop diversity and inclusion goals suitable to the needs of local HPC communities. During the pilot, WHPC will work with the Chapters and Affiliates to support and promote the work of women in their organizations, develop crucial role models, and assist employers in the recruitment and retention of a diverse and inclusive HPC workforce.

WHPC is stewarded by EPCC at the University of Edinburgh. For more information visit http://www.womeninhpc.org.  

For more information on the U-M chapter, contact Dr. Geva at sgeva@umich.edu.

MIDAS researchers’ papers accepted at ACM KDD data science conference in London

By | General Interest, Happenings, News, Research

Several U-M faculty affiliated with MIDAS will participate in the KDD2018 Conference in London in August. The meeting is held by the Associate for Computing Machinery’s Special Interest Group in Knowledge Discovery and Data Mining (KDD).

U-M researchers had the following papers accepted:

Learning Adversarial Networks for Semi-Supervised Text Classification via Policy Gradient
Yan Li (U-M); Jieping Ye (U-M)

TINET: Learning Invariant Networks via Knowledge Transfer
Chen Luo (Rice University); Zhengzhang Chen (NEC Laboratories America); Lu-An Tang (NEC Laboratories America); Anshumali Shrivastava (Rice University); Zhichun Li (NEC Laboratories America); Haifeng Chen (NEC Laboratories America); Jieping Ye (U-M)

Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts
Jiaqi Ma(U-M); Zhe Zhao (Google); Xinyang Yi (Google); Jilin Chen (Google); Lichan Hong (Google); Ed Chi (Google)

Learning Credible Models
Jiaxuan Wang (U-M); Jeeheh Oh (U-M); Haozhu Wang (U-M); Jenna Wiens (U-M)

Deep Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Trajectories
Ian Fox (U-M); Lynn Ang (U-M); Mamta Jaiswal (U-M); Rodica Pop-Busui (U-M); Jenna Wiens (U-M)

ActiveRemediation: The Search for Lead Pipes in Flint, Michigan
Jacob Abernethy (Georgia Institute of Technology); Alex Chojnacki (U-M); Arya Farahi (U-M); Eric Schwartz (U-M); Jared Webb (Brigham Young University)

Career Transitions and Trajectories: A Case Study in Computing
Tara Safavi (U-M); Maryam Davoodi (Purdue University); Danai Koutra (U-M)

In addition, U-M Professor Jieping Ye will present at the event’s Artificial Intelligence in Transportation tutorial, and U-M Assistant Professor Qiaozhu Mei will speak as part of Deep Learning Day.

Cluster and storage maintenance set for Aug. 5-9

By | Flux, General Interest, Happenings, HPC, News

To accommodate updates to software, hardware, and operating systems, Flux, Armis, ConFlux, Flux Hadoop, and their storage systems (/home and /scratch) will be unavailable starting at 9 a.m. Sunday, August 5th and returning to service on Thursday, August 9th. These updates will improve the performance and stability of ARC-TS services.  We try to encapsulate the required changes into two maintenance periods per year and work to complete these tasks quickly, as we understand the impact of the maintenance on your research.

During this time, the following maintenance tasks are planned:

  • Operating system, compiler, and software updates (All clusters).
  • InfiniBand networking updates (firmware and software) (Flux/Armis/ConFlux)
  • Resource manager and job scheduling software updates (All clusters).
  • Lmod default software version changes (Flux/Armis/ConFlux)
  • Upgrade HPC systems to CUDA 9.X (Flux/Armis/ConFlux)
  • Update software of the Lustre file systems that provide /scratch (Flux)
  • Update Elastic Storage Server (ConFlux)
  • Enable 32-bit file IDs on home and software volumes (Flux/Armis)
  • Network switch maintenance (Turbo)

For Flux and Armis HPC jobs, you can use the command “maxwalltime” to discover the amount of time remaining until the beginning of the maintenance. Jobs requesting more walltime than remains before the maintenance will be queued and started after the maintenance is completed.

All Flux, Armis, ConFlux, and Flux Hadoop filesystems will be unavailable during the maintenance. We encourage you to copy any data that might be needed during that time from Flux prior to the start of the maintenance.

Turbo storage will be unavailable starting at 6 a.m Monday, August 6th and will return to service at 10 a.m.

We will post status updates on our Twitter feed ( https://twitter.com/arcts_um ) throughout the course of the maintenance and send an email to all HPC and Hadoop users when the maintenance has been completed.  Updates will also be compiled at http://arc-ts.umich.edu/summer-2018-maintenance/. Please contact hpc-support@umich.edu if you have any questions.

 

MICDE awards seven Catalyst Grants

By | General Interest, Happenings, News, Research

The Michigan Institute for Computational Discovery and Engineering has awarded its second round of Catalyst Grants, providing between $80,000 and $90,000 each to seven innovative projects in computational science. The proposals were judged on novelty, likelihood of success at catalyzing larger programs and potential to leverage ARC’s computing resources.

The funded projects are:

Title: Exploring Quantum Embedding Methods for Quantum Computing
Researchers: Emanuel Gull, Physics; Dominika Zgid, Chemistry.
Description: The research team will design quantum embedding algorithms that can be early adopters of quantum computers on development of advanced materials for possible applications in modern batteries, next-generation oxide electronics, or high-temperature superconducting power cables.

Title: Teaching autonomous soft machines to swim
Researchers: Silas Alben, Mathematics; Robert Deegan, Physics, Alex Gorodetsky, Aerospace Engineering
Description: Self-oscillating gels are polymeric materials that change shape, driven by chemical reactions occurring entirely within the gel. The research team will develop a computational and machine learning program to discover how to configure self-oscillating gels so that they undergo deformations that result in swimming. The long term goal is to develop a general framework for controlling autonomous soft machines.

Title: Urban Flood Modeling at “Human Action” Scale: Harnessing the Power of Reduced-Order Approaches and Uncertainty Quantification
Researchers: Valeriy Ivanov, Civil and Environmental Engineering; Nikolaos Katopodes, Civil and Environmental Engineering; Darren McKague Climate and Space Sciences and Engineering; Khachik Sargsyan, Sandia National Labs.
Description: The research team will demonstrate urban flood monitoring and prediction capabilities using NASA Cyclone Global Navigation Satellite System (CYGNSS) data and relying on state-of-the-science uncertainty quantification tools in a proof-of-concept urban flooding problem of high complexity.

Title: Advancing the Computational Frontiers of Solution-Adaptive, Scale-Aware Climate Models
Researchers: Christiane Jablonowski, Climate and Space Sciences and Engineering; Hans Johansen, Lawrence Berkeley National Lab.
Description: Researchers will further develop a 3-D mesh adaptation model for climate modeling, allowing computational resources to be focused on phenomena of interest such as tropical cyclones or other extreme weather events. The project will also introduce data-driven machine learning paradigms into modeling of clouds and precipitation.

Title: Deciphering the meaning of human brain rhythms using novel algorithms and massive, rare datasets
Researchers: Omar Ahmed, Psychology, Neuroscience and Biomedical Engineering
Description: The team will develop a set of algorithms for use on high performance computers to analyze de-identified brain data from patients in order to better understand what electrical oscillations tell us about rapidly changing behavioral and pathological brain states.

Title: Embedded Machine Learning Systems To Sense and Understand Pollinator Behavior
Researchers: Robert Dick, Electrical Engineering and Computer Science; Fernanda Valdovinos Ecology and Evolutionary Biology, Center for Complex Systems; Paul Glaum, Ecology and Evolutionary Biology.
Description: To understand the mechanisms driving the population dynamics of pollinators, the research team will develop technologies for deeply embedded hardware/software learning systems capable of remote, long term, autonomous operation; and will analyze the resulting new data to better understand pollinator activity.

Title: Deep Learning for Phylogenetic Inference
Researchers: Jianzhi Zhang, Ecology and Evolutionary Biology; Yuanfang Guan, Computational Medicine and Bioinformatics.
Description: The research team will use deep neural networks to infer molecular phylogenies and extract phylogenetically useful patterns from amino acid or nucleotide sequences, which will help understand evolutionary mechanisms and build evolutionary models for a variety of analyses.

For more on the Catalyst Grants, see http://micde.umich.edu/catalyst/.