This document contains the following sections. Click on any one to jump to it.
  1. Accessing TensorFlow
  2. Installing TensorFlow
  3. TensorFlow Test
  4. Prior Installations
  5. Documentation

Accessing TensorFlow

TensorFlow is an end-to-end open source platform for machine learning (ML).  It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications.

To use TensorFlow, you must first install the TensorFlow package into your local Python library collection.  You only need to install Python packages once for each cluster on which you wish to use the library and, separately, for each version of Python that you use.  

Installing TensorFlow

Version 1

The most recent version of Anaconda that is compatible with TensorFlow 1 is that which provides Python version 3.6. To install TensorFlow 1, you must first load the python3.6-anaconda module as follows

$ module load python3.6-anaconda

With the python3.6-anaconda module loaded, you will then be able to install Python packages into your personal library using the pip command with the --user tag which will, by default, place packages in


where ?.? are the numbers in the Python version.  The library will then be available to you for this and future sessions.

To install the TensorFlow 1 package (version 1.15 or greater), the pip install command is

$ pip install --user "tensorflow>=1.15,<2.0"

Earlier versions of TensorFlow (<1.15) required installation of separate packages for use with and without a GPU device. Separate installations of TensorFlow packages are no longer required, regardless of whether you will be using a GPU device or not. 

Version 2

The most recent version of Anaconda that is compatible with TensorFlow 2 is that which provides Python version 3.7. To install TensorFlow 2, you must first load the python3.7-anaconda module as follows

$ module load python3.7-anaconda

With the python3.7-anaconda module loaded, you will then be able to install Python packages into your personal library using the pip command with the --user tag described above.

To install the TensorFlow 2 package, the pip install command is

$ pip install --user "tensorflow>=2.1"


TensorFlow Test

To ensure that your TensorFlow package is working properly, run the short test script, located in the examples directory, from a GPU node. The following modules must be loaded to use TensorFlow with a GPU device:  Anaconda3, CUDA, and cuDNN.

  • Anaconda provides a python environment with over 200 packages pre-installed
  • CUDA is a parallel computing platform and programming model for computing on GPUs
  • cuDNN is a GPU-accelerated library of primitives for deep neural networks

The below Slurm script will initiate a job on a GPU node and run the test script.


#SBATCH --job-name=tf_test
#SBATCH --account=<your-account>
#SBATCH --partition=gpu
#SBATCH --gres=gpu:1
#SBATCH --time=15:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --mem=5gb
#SBATCH --mail-type=FAIL

# Load modules
module load python3.6-anaconda
module load cuda/10.0.130 cudnn/10.0-v7.6
module list

# Run the test
python3 /sw/examples/tensorflow/

Copy and paste the text above into a new Slurm batch script file such as tf-test.sbat, put your Slurm account name in place of <your-account>, and run the Slurm script with sbatch via,

$ sbatch tf-test.sbat

The last few lines of output produced from running the Slurm script on a GPU node, excluding possible warning messages, should include content similar to the following:

$ tail slurm-<jobID>.out | grep -v deprecated

2019-10-24 11:04:55.073023: I tensorflow/core/common_runtime/gpu/] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15022 MB memory) -> physical GPU (device: 0, name: Tesla V100-PCIE-16GB, pci bus id: 0000:d8:00.0, compute capability: 7.0)
[[4 6 8]
 [4 6 8]]

Specifically, it should identify a GPU device as well as the calculation result. Standard output will print to a file with the default naming convention of slurm-<jobID>.out, or on the command line for an interactive bash job. If the example runs without errors, everything is good!

If you are using TensorFlow without a GPU, the output of the example test will not include a line with the GPU specs. Instead, the last couple of output lines will be as follows:

2019-10-24 17:18:08.036518: I tensorflow/compiler/xla/service/]   StreamExecutor device (0): Host, Default Version
[[4 6 8]
 [4 6 8]]


Previously Installed Versions

The python3.6-anaconda module on Great Lakes now provides NumPy version 1.16.3 which is compatible with TensorFlow 1. Prior instructions provided by ARC-TS for installing TensorFlow required the user to install NumPy version 1.16.3 into their personal library. However, we have updated the python3.6-anaconda module to include the correct version of NumPy. If you installed TensorFlow following the earlier procedure and you would like to upgrade to the most recent version of TensorFlow 1, please follow these instructions:

$ module load python3.6-anaconda
$ pip uninstall -y numpy
$ pip uninstall -y tensorflow
$ pip uninstall -y tensorflow-gpu
$ pip install --user "tensorflow>=1.15,<2.0"


TensorFlow Documentation

Official TensorFlow documentation can be found here: TensorFlow Guide.